Co oling a nanomechanical resonator using feedback: toward quantum behavior

نویسندگان

  • Asa Hopkins
  • Kurt Jacobs
  • Salman Habib
  • Keith Schwab
چکیده

Nano-electro-mechanical devices are now rapidly approaching the point where it will be possible to observe quantum mechanical behavior. However, for such behavior to be visible it is necessary to reduce the thermal motion of these devices down to temperatures in the millikelvin range. Here we consider the use of feedback control for this purpose. We analyze an experimentally realizable situation in which the position of the resonator is continuously monitored by a Single-Electron Transistor. Because the resonator is harmonic, it is possible to use a classical description of the measurement process, and we discuss both the quantum and classical descriptions. Because of this the optimal feedback algorithm can be calculated using classical control theory. We examine the quantum state of the controlled oscillator, and the achievable effective temperature. Our estimates indicate that with current experimental technology, feedback cooling is likely to bring the required milliKelvin temperatures within reach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Measurement of a Coupled Nanomechanical Resonator—Cooper-Pair Box System

We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Fock state of the resonator. Similarly, the frequency of the resonator becomes dependent upon the state of the Cooper-pair box. We consider whether th...

متن کامل

Quantum memory for light with a quantum dot system coupled to a nanomechanical resonator

The specific features including high factor and long vibration lifetime of nanomechanical resonator (NR) in nano-optomechanical systems have stimulated research to realize some optical devices. In this work, we demonstrate theoretically that it is possible to achieve quantum memory for light on demand via a quantum dot system coupled to a nanomechanical resonator. This quantum memory for light ...

متن کامل

ar X iv : c on d - m at / 0 30 25 29 v 1 2 6 Fe b 20 03 Feedback cooling of

Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics of mesoscopic systems. However, the present state of the art requires cooling down to the milliKelvin regime in order to observe quantum effects. Here we present an active feedback strategy based on continuous observation of the resonator position for the purpose of obtaining these low tempe...

متن کامل

Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator

We study theoretically a radio frequency superconducting interference device integrated with both a nanomechanical resonator and an LC one . By applying adiabatic and rotating wave approximations, we obtain an effective Hamiltonian that governs the dynamics of the mechanical and LC resonators. Nonlinear terms in this Hamiltonian can be exploited for performing a quantum nondemolition measuremen...

متن کامل

Superconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum information processing

We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of singleand multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, currentbiased Josephson ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004